

Objectives

Comprehensively characterize life in a unique hypersaline environment:

- 1. Cellular signatures (SIMS)
- 2. Lipid signatures (lipids)
- 3. Amino acid signatures
- 4. DNA signatures (metagenomics)

Amino Acid Analysis Intro

- Two high salinity coping mechanisms
- 1. Organic in
- Energetically expensive
- Does not require protein alteration
- 2. Salt in
- Energetically Cheap
- Requires protein alteration
- † Acidic AAs ↓Basic AAs Low hydrophobic AAs
- Salt in more prevalent at higher salinities

DNA Signatures

"Pyrosequncing" of the Dead Sea

- Novel sequencing method
- Massively parallel (~400,000 sequences per plate)*
- Yields very short reads (~200 bp)
- PSU is a good place to do this work

As examples,

our modern Dead Sea half-plate gave 273,296 sequences with an average read length of 251 bp,

and last week, we had a full plate yield 546,127 reads with an average length of ~194 bp (105 Mb).

454 Sequencing (to compare today's Dead Sea with the 1992 bloom event)

- 1. 16S rRNA sequence tags to look at species distribution
- 2. Non-specific DNA sequencing (2x400,000)
- 3. Assembled fosmid sequences

End up with close to ~200 Mb of data

Sequencing Status

- 1. Amplicons ready for sequencing
- 2. Fosmids:

1 complete 40kb fosmid

Majority of ORFs are haloarchaeal However, bacterial ORF every so often

(e.g., citryl-CoA lyase from an actinobacteria)

Number of other large fosmid contigs

3. Metagenomes sequenced:

½ plate 1992 after whole genome amplification

½ plate of modern Dead Sea

Amino Acid Analysis Intro

- Two high salinity coping mechanisms
- 1. Organic in
- Energetically expensive
- Does not require protein alteration
- 2. Salt in
- Energetically Cheap
- Requires protein alteration
- † Acidic AAs ↓Basic AAs Low hydrophobic AAs
- Salt in more prevalent at higher salinities

Summary

- 1. Identify a high number of DNA-based signatures of hypersaline life
- 2. Reveal organic biosignatures (cells, lipids, phospholipids, and amino acids) from the water and sediments
- 3. Integrate results with measured geochemistry
- 4. Involve international expert collaborators in analyzing the results

Acknowledgments

NAI for providing funding

Oded Béjà & Aharon Oren our international collaborators

Moshe Rhodes & Kat Dawson

Jason Dworkin, Sorel Fitz-gibbon, Andreas Teske, & Kate Freeman